Đề tuyển sinh môn toán lớp 10 tp.HCM năm 2009 – 2010

KÌ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2009-2010

KHÓA NGÀY 24-6-2010

MÔN THI: TOÁN 

Thời gian làm bài: 120 phút (không kể thời gian giao đề)

Câu 1: Giải các phương trình và hệ phương trình sau:

a) 8x2 – 2x – 1 = 0;

Câu 4: Cho phương trình x2– (5m – 1)x + 6m2 – 2m = 0 (m là tham số)

a) Chứng minh phương trình luôn có nghiệm với mọi m;

b) Gọi x1, x2 là nghiệm của phương trình. Tìm m để x12 + x2= 1

Câu 5: Cho tam giác ABC (AB < AC) có ba góc nhọn nội tiếp đường tròn (O) có tâm O, bánkính R. Gọi H là giao điểm của ba đường cao AD, BE, CF của tam giác ABC. Gọi S làdiện tích tam giác ABC.

a) Chứng minh rằng AEHF và AEDB là các tứ giác nội tiếp đường tròn.

b) Vẽ đường kính AK của đường tròn (O). Chứng minh tam giác ABD và tam giác AKCđồng dạng với nhau. Suy ra AB.AC = 2R.AD và S = AB.BC.CA/4R.

c) Gọi M là trung điểm của BC. Chứng minh EFDM là tứ giác nội tiếp đường tròn.

d) Chứng minh rằng OC vuông góc với DE và (DE + EF + FD).R = 2S.

Hết.

About these ads

Gửi THẢO LUẬN (Bài Tập - bài Giải - ý kiến ) : "Một người vì mọi người, Mọi người vì một người"

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Thay đổi )

Twitter picture

You are commenting using your Twitter account. Log Out / Thay đổi )

Facebook photo

You are commenting using your Facebook account. Log Out / Thay đổi )

Google+ photo

You are commenting using your Google+ account. Log Out / Thay đổi )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

Join 127 other followers

%d bloggers like this: