Posts Tagged ‘gia su’

cách giải toán giải phương trình bậc nhất lớp 8

Các dạng giải phương trình bậc nhất lớp 8

–o0o–

Dạng cơ bản :

(x + 1)(2x – 3 ) – x2 = (x – 2)2

⇔ 2x2 – 3x + 2x – 3 – x2 = x2 – 4x + 4

⇔ 2x2 – x2 – x2 – 3x + 2x + 4x  = 3 + 4

⇔ 3x = 7

⇔ x = 7/3

vậy : S = {7/3}

Dạng phương trình tích :

 x2 – 4 – 5(x – 2)2 = 0

⇔ (x2 – 22) – 5(x – 2)2 = 0

⇔ (x – 2)(x + 2) – 5(x – 2)2 = 0

⇔ (x + 2)[ (x – 2) – 5(x – 2) ] = 0

⇔ (x + 2)(8 – 4x) = 0

⇔x + 2 = 0 hoặc 8 – 4x = 0

⇔x = -2 hoặc x = 8/4 = 2

vậy : S = {-2; 2}

dạng phương trình chứa ẩn ở mẫu :

 bài 1 :

\frac{2}{x+1}-\frac{3}{x-1}=\frac{x-3}{x^2-1}

phân tích mẫu thành nhân tử :

x2 – 1 = (x + 1)(x – 1)

mẫu thức chung : (x + 1)(x – 1)

đk : x + 1 ≠ 0 và x – 1  ≠ 0

x ≠ -1 và  x ≠ 1

x ≠ ±1

\frac{2(x-1)}{(x+1)(x-1)}-\frac{3 (x+1)}{(x-1) (x+1)}=\frac{x+5}{x^2-1}

=> 2(x – 1) -3(x+1) =x + 5

⇔ 2x – 2 – 3x – 3 = x + 5

⇔ 2x  – x – 3x  = 5 + 2 + 3

⇔ -2x = 10

⇔ x = -5

vậy : S = {-5}.

 bài 2 :

\frac{x+1}{2x-2}+\frac{2}{1-x^2}=\frac{x-1}{2x+2}

\frac{x+1}{2x-2}-\frac{2}{x^2-1}-\frac{x-1}{2x+2}=0   (2)

phân tích mẫu thành nhân tử :

2x – 2  = 2(x – 1)

2x + 2  = 2(x + 1)

x2 – 1 = (x + 1)(x – 1)

mẫu thức chung : 2(x + 1)(x – 1)

đk : x + 1 ≠ 0 và x – 1  ≠ 0

⇔ x ≠ -1 và  x ≠ 1

⇔ x ≠ ±1

(2) trở thành : \frac{x+1}{2(x-1)}-\frac{2}{(x-1)(x+1)}-\frac{x-1}{2(x+1)}=0   

\frac{(x+1) (x + 1)}{2(x-1) (x + 1)}-\frac{2.2}{2(x-1)(x+1)}-\frac{(x-1) (x-1)}{2(x+1) (x-1)}=0   

=> (x+1)2 – 2 – (x – 1)2   = 0

⇔ x2 +2x + 1 – 2 – x2 +2x  – 1 = 0

⇔ 4x = 2

⇔ x = 1/2

vậy : S = {1/2}.